Enchiridion: Vol. 2 (2016): Mike Catanzaro

Mike Catanzaro (University of Florida)

User’s Guide
Topic 1: Key insights and organizing principles
Topic 2: Conceptual metaphors and mental imagery
Topic 3: Story of the development
Topic 4: Colloquial summary
(as a single PDF)

Source Paper
Dynamics and fluctuations of cellular cycles on CW complexes
joint with Vladimir Y. Chernyak and John R. Klein
(temporary link)

Source Paper Abstract (temporary)
We consider stochastic motion of subcomplexes of a CW complex, and explore the implications on the underlying space. The random process on the complex is motivated from Ito diffusions on smooth manifolds and Langevin processes in physics. We associate a Kolmogorov equation to this process, whose solutions can be interpretted in terms of generalizations of electrical, as well as stochastic, current to higher dimensions. These currents also serve a key function in relating the random process to the topology of the complex. We show the average current generated by such a process can be written in a physically familiar form, consisting of the solution to Kirchhoff’s network problem and the Boltzmann distribution, suitably generalized to arbitrary dimensions. We analyze these two components in detail, and discover they reveal an unexpected amount of information about the topology of the CW complex. The main result is a quantization result for the average current in the low temperature, adiabatic limit. As an application, we express the Reidemeister torsion of the complex, a topological invariant, in terms of these quantities.

License information
Creative Commons License
This User’s Guide is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.