Enchiridion: Vol. 2 (2016): Luke Wolcott

Luke Wolcott (University of Southern California)

User’s Guide
Topic 1: Key insights and organizing principles
Topic 2: Conceptual metaphors and mental imagery
Topic 3: Story of the development
Topic 4: Colloquial summary
(as a single PDF)

Source Paper
Variations of the telescope conjecture and Bousfield lattices for localized categories of spectra

Source Paper Abstract
We investigate several versions of the telescope conjecture on localized categories of spectra, and implications between them. Generalizing the “finite localization” construction, we show that on such categories, localizing away from a set of strongly dualizable objects is smashing. We classify all smashing localizations on the harmonic category, H\mathbb{F}_p-local category and I-local category, where I is the Brown-Comenetz dual of the sphere spectrum; all are localizations away from strongly dualizable objects, although these categories have no nonzero compact objects. The Bousfield lattices of the harmonic, E(n)-local, K(n)-local, H\mathbb{F}_p-local and I-local categories are described, along with some lattice maps between them. One consequence is that in none of these categories is there a nonzero object that squares to zero. Another is that the H\mathbb{F}_p-local category has localizing subcategories that are not Bousfield classes.

License information
Creative Commons License
This User’s Guide is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.