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1. Key insights and central organizing principles

Conceptually, the starting point for [Wol14] is the paper [DP08] by Dwyer
and Palmieri, studying the Bousfield lattice of the derived category of a certain
non-Noetherian ring Ay, where k is a countable field.

As explained in the Introduction in [Wol14], and in the Philosophy section in
[DPO08], there are formal parallels between this lattice, and the Bousfield lattice
of the p-local stable homotopy category S, which arises in topology. The latter
is very bizarre and hard to grasp, and derived categories of non-Noetherian rings
offer a somewhat simpler setting. In the analogy between topology and algebra,
it becomes natural to consider Dwyer and Palmieri’s ring Ay, but with the p-local
integers Z, replacing k. This is AZ(p>-

Then the obvious, and somewhat uninspired, research question is: What
results of [DP08] carry over to D(Az, )?

The results in the paper [Wol14] build towards a fairly decent answer to this
question. Various tools and machinery are developed along the way. For each
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such tool, it is natural to try to state and prove results in as much generality
as possible. Thus the paper progresses from general to specific, in three distinct
phases, Sections 3 — 5. This is the literal order of exposition, but also a helpful
conceptual roadmap. Each phase has a very different conceptual flavor.

1.1. Intro and Section 2. Before discussing Sections 3 — 5, it’s worth
saying some things about the first two sections. The Introduction and Section
2 were intended to be a careful, somewhat thorough introduction to Bousfield
lattices: what they are, why they are interesting, and examples of what we know
about them. This stemmed from two insights.

Key IpeEA 1.1. [IK13, Thm. 3.1] In any well generated tensor triangulated
category, there is a set of Bousfield classes (rather than a proper class), and thus
a Bousfield lattice.

KEeY IDEA 1.2. The proof of [IK13, Thm. 3.1] also applies to well generated
localizing tensor ideals of a tensor triangulated category.

The first idea suggests that Bousfield lattices show up in more places than
previously realized, and so deserve a unified treatment. But the second idea is
more exciting: if S C T is such a localizing tensor ideal, then we can talk about
its Bousfield lattice BL(S). But now the tensor unit may not be in S! This causes
many previous known facts about Bousfield lattices to break. For example, it is
no longer the case that (X) = (0) implies X = 0, the maximum Bousfield class
is no longer (1), and complements are no longer unique.

It becomes necessary to carefully revisit what we know about Bousfield
classes, and treat them in this more general light. This is what Section 2 is
about. I also included a long subsection on examples, to gather facts that I
thought were illuminating in getting a sense of what Bousfield lattices can be
like.

1.2. Section 3. The key idea in Section 3 is the following.

KEeY IDEA 1.3. The Verdier quotient T/S of a well generated tensor triangu-
lated category T is also well generated. So it has a Bousfield lattice. What is it?¢
There is a quotient functor m: T — T/S; how does this connect the two Bousfield
lattices?

Sure enough, the quotient functor induces a map between the Bousfield lat-
tices. You might expect this is trivial, but in fact I think it’s only true if S = (Z)
is a Boustfield class! In other words, you can’t just mod out by anything, it has
to be a Bousfield class. I took that to mean that at least something non-trivial
is going on.

Section 3 runs with this idea. Lemma 3.1 gives an onto join-morphism. When
you have an onto map, you try to take the kernel and sharpen it. Thus it’s
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natural to consider the quotients of BL(T). And then you have the following
clever question.

QUESTION 1.4. What is the relationship between the Bousfield lattice of a
quotient, and the quotient of a Bousfield lattice?

Most of the results in Section 3 center on this question. Proposition 3.2
seems to give a good answer, but really points out a key weirdness about lattices.
The map in Proposition 3.2 is onto, has trivial kernel, and preserves arbitrary
joins. But this isn’t enough for a lattice isomorphism! Proposition 3.5 gives
two examples where this is not a lattice isomorphism. On the other hand, in
Corollaries 3.3 and 3.4, we have two cases where there is an isomorphism. The
more important one is Corollary 3.3. This is a more-or-less satisfying answer to
Question 1.4.

1.3. Section 4. Section 4 is centered on trying to understand how a map
of rings f : R — S can relate the Bousfield lattices BL(D(R)) and BL(D(S)).
Some results are in complete generality, true for any ring map f. But the more
interesting ones are in Section 4.3, when we add a hypothesis.

The reader is quickly confronted with a severe warning, and it’s worth point-
ing out that this is not a key insight or central idea. The issue is simply this: the
rings Ay and AZ(p) are graded, and then their derived categories are bigraded,
and this is a little unusual. I wanted my statements and results in this section to
hold for them. But I also wanted to talk about the rings that more people cared
about, i.e. ungraded rings. Since all the proofs applied in both cases, the most
streamlined way I could think to explain things was by laying out the warnings.

Key IDEA 1.5. A ring map R i> S induces maps f. : Mod-R & Mod-S': f*,
which descend to derived categories. These are very, very nice functors. For
example, the projection formula holds.

Section 4.1 is full of helpful properties of these functors. The projection
formula is probably the single most useful result in the whole paper, and gets
used over and over in proofs. Projection formulas like this appear in many other
contexts; this setup is sometimes called the “Grothendieck context”.

The results in Section 4.2 are mostly partial and unsatisfying, only precursors
to their improvements in Section 4.3. The condition there — (fo f*X) = (X) for
all X —is a strong and useful one. It’s essentially a surjectivity condition, and so
I expect it to hold in situations where R is “big” and S is “small”. (For example,
in my thesis I show that this condition is satisfied when f : R — S is a surjection
onto a Noetherian ring.)

It is also a somewhat arbitrary condition. A more complete treatment would
have considered other types of ring maps (injective?), or other conditions. But
in the paper there’s only this one condition considered; it is the one that yields
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nice results (of these I think Theorem 4.18 is the nicest), and applies in Section
5.

1.4. Section 5. Finally in Section 5 we have specialized to the original
question: what can we say about the Bousfield lattice of D(Az,)?

KEY IDEA 1.6. The ring AZ(p) is closely related to the two rings A, and Ag,

which are covered in the Dwyer-Palmieri paper [DPO8] because F), and Q are
countable fields.

For example, we have the projection g : AZ(p> — Ap,. Since it’s surjective,
we can ask if the condition of Section 4.3 holds. The first order of business is
Proposition 5.3, showing that it does. For g, at least; my guess is that he does
not satisfy the condition of Section 4.3, but I was unable to prove or disprove it.
Thus we can apply all the results from Section 4, using g,. This gives various
lattice maps, and lattice isomorphisms with quotients. But the strongest results
come from two realizations.

Key IDEA 1.7. The three derived categories D(Az, ), D(Ar,), and D(Aq)
are related by a smashing localization functor L : D(Az ) — D(Agz,), finite
localization away from th(g®Ar,).

KEY IDEA 1.8. Any smashing localization causes a splitting of the Bousfield
lattice into a product of lattices.

From the first realization we can perform many computations, and Proposi-
tion 5.8 gives a clear picture of what’s equal to what. But the second realization,
laid out in Lemmas 5.11 and 5.12, Proposition 5.13, and Theorem 5.14, is more
structurally powerful. Combining the two, we get a very explicit and satisfying
splitting of the Bousfield lattice of D(Az ).

At the end, Corollary 5.18 is a nice non-trivial application of the theory
developed in Section 2, on Bousfield lattices of localizing tensor ideals that don’t
contain the tensor unit. Corollary 5.19 is only included for the record; cardinality
calculations are useful qualitative facts to have available.

2. Metaphors and imagery

The central objects of the paper are Bousfield lattices of derived categories
of non-Noetherian rings, and this triple-layer idea has three levels of imagery.

2.1. Bousfield lattice. Bousfield lattices are quite visual and explicit in
my mind. They feel simpler — simpler than the categories they’re built out of, at
least. Considering “the Bousfield lattice of...” involves a mental stepping-above,
moving up a level. This is usually experienced as moving up in my visual field,
or less commonly lifting up off the page. Each symbol BL(—) evokes this cleaner,



A USER’S GUIDE: BOUSFIELD LATTICES OF NON-NOETHERIAN RINGS 5

more transparent feeling. Bousfield lattices are posets, with a bottom and a top.
I see vertices and lines connecting them, indicating the partial order, moving
from bottom to top. The join of a set of elements is obviously positioned above
them somewhere, the meet below. These images are obvious and were probably
learned in a classroom or from a textbook. With Bousfield lattices, the joins —
even infinite joins — are easy to compute, and show up frequently.

The smash operation also appears below its arguments, further down than
the meet. It feels stable and comforting. For the smash commutes with coprod-
ucts, hence arbitrary joins. It’s not too hard to compute this operation, and
manipulate it efficiently. The meet, on the other hand, is hard to pin down, is
ideally avoided in computations, and exists in a visual position but a vague one.

While computing with Bousfield classes, as in Section 2 of the paper, there’s
a fair amount of symbol manipulation. This is very formal; I know various
manipulations and formulas, and can apply them when appropriate. They wait
behind me, out of my vision, but come forward when something on the paper
starts to ring a bell. It’s almost a form of pattern recognition; at each step the
calculations displayed before me are suggesting operations to perform. I can only
go forward about two steps in my head, without writing things down.

If prompted to contemplate the structure of the Bousfield lattice, I imme-
diately see the statement BA C DL C BL. I know that in many cases they are
all equal, but in the cases I'm mostly fascinated by they aren’t. There’s a big
mysterious gap between BL and DL, and floating there are the square-zero ob-
jects, represented by the notorious I A I = 0. Both DL and BA have the feel of
nicer, more structured lattices, albeit sitting inside BL awkwardly. The objects
in BA appear to me in pairs, since these are the complemented classes. There is a
special sub-collection among them, the pairs {(C1), (L1)} arising from smashing
localization functors.

Once on a hike in the rain, I looked at the drops falling in a puddle on the
trail, and I thought I saw something complex enough, rich enough, to be “what
a Bousfield lattice looks like”. Not in a way that “I understand BL now”, but
rather I understood it could be understood, even if it were so complex that that
understanding wouldn’t take a form we had yet conceived of. Although sadly 1
won’t be able to describe the image, I can sort of see it in my mind’s eye, and
I evoke this puddle experience (because it was as much about the image as the
rain, the scenery, and the hotspring I was leaving) when I need to remember
what I'm dealing with and why.

2.2. Derived categories. The key to understanding and being able to work
with derived categories is establishing a strong hierarchy of conceptual levels.
Here I'll just talk about derived categories of rings. A ring R gives a module
category Mod-R. This needs to be treated as a black box, a nice abelian cat-
egory where almost everything works as we would want it to. The category of
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chain complexes Ch(R) has a flavor completely of its own — its own obvious vi-
sual images of complexes of modules, its own body of results and computations.
Every time I inhabit this category, I see commutative diagrams between chain
complexes, and computations extracting information from these.

But to pass to D(R), I strongly suggest reorienting. Forget chain complexes
as much as possible. This category D(R) has a host of formal properties, and it is
most helpful to clean the plate and start from scratch with these. The approach
of axiomatic stable homotopy theory obviously encourages this. Over time, a
map of objects X — Y becomes exactly that — just two symbols connected by an
arrow. No chain complex representatives, no modules, no rings acting. I know
there’s a tensor operation — heuristically a multiplication — with a unit. There
are coproducts, which I think of as an addition operation. The triangles are
fun. They take some getting used to, but after enough practice seeing how one
uses them in computations, they become powerful and enjoyable tools. Every
morphism fits into such a triangle. Morphisms between triangles behave nicely.
The ability to turn a triangle into a long exact sequence of homology groups
imbues the triangles with a strength and sharpness.

The way to think about derived categories is to work with these formal prop-
erties as much as possible. An object is just an object. But it inevitably becomes
necessary to dig deeper, into the structure of the particular axiomatic stable ho-
motopy category you are working with. And so you must choose a representative,
write down a chain complex, and stare at it. Knowing when to pass from the
D(R) level to the Ch(R) level, and back up, is an art.

I've found it helpful to nurture the distinct conceptual flavors, and atmo-
spheres, of the two levels D(R) and Ch(R). Each has developed its own ecosystem
in my mind. This helps me to immerse myself in the subtleties and functionalities
of one level, with less distraction and confusion. Moving between levels is a dis-
crete cognitive act, and then I'm in a new environment, with its own flavor. The
ability to nurture this separation of ideas, and navigate between, seems crucial
to understanding abstract mathematics and harnessing its power.

To give an example, consider Definition 5.6. The inclusion Z,) — Q of the
p-local integers into the rationals evokes basic abstract algebra imagery: these
rings are sets of elements with structure; ring maps are somewhat rigid; we
can imagine writing out fractions a/b. Then I contemplate that this induces a
morphism Az~ — h®Ag in D(Az(p)). First I see the inclusion passing to an
inclusion Az, — Ag (see comments below). Then I imagine these as chain
complexes, concentrated in degree zero, in Ch(AZ(p)). You can see this clearly:
two infinite complexes, mostly zeros, with an arrow mapping from AZ(p) to Ag.
This arrow, a Z,-module map, still prompts me to think about the elements
inside these modules. But then we switch to the derived category level. T see
the target complex as a representative of h®*Ag, and suddenly there is only two
symbols connected by an arrow: AZ(p) — h®*Ag. The symbol A® reminds me
this is a high-level functor, between derived categories that are themselves now
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zoomed-out black boxes. Now, in this triangulated world, it is a simple step to
extend this map to a triangle, and define F' as the fiber. At this point in my
mind, F really exists just as a symbol completing a triangle.

2.3. Non-Noetherian rings. The paper is very notation-heavy, and I think
there’s a real danger of getting lost by the sub-subscripts. At no point do I use
the substructure of, say Az(p), to prove anything; there are no proofs manipulat-
ing the x;’s or n;’s. For this reason, I think it’s helpful to mostly forget about
what AZ(p) is, except for being a non-Noetherian polynomial Z,-algebra. Then
Agq is the same, but with a Q everywhere that AZ(p> has a Z;,), and likewise Ap,.
Most of my intuition about how Z,), Fp, and Q relate gets carried over to Az(p),
Ar,, and Ag. This certainly helps in suggesting to me what might be true about
the latter; proving these statements requires care, of course.

I never really use the non-Noetherian nature of these rings, except insofar
as I build on results in [DPO08]. (In that paper, they certainly compute with
x;’s.) The key point is that Noetherian rings are too nice. The Bousfield lattice
of the derived category of a Noetherian ring is completely understood, and is too
nice (in my opinion). These rings Az, Ar,, and Ag are some of the simplest
non-Noetherian rings to consider.

2.4. Other concepts. Next I'll describe how I think about a few of the
other ideas that show up in the paper.

2.4.1. Tensor triangulated categories. 1 discussed this above, when talking
about the formal properties of D(R) and working at that level. Since this formal
structure is all that tensor triangulated categories have, by definition, one has no
choice but to use that and only that. But even when proving things about tensor
triangulated categories, I find it useful to occasionally “project down” to one of
the colorful examples, like spectra or D(R). This might suggest intuition about
what to expect to be true. But it also nicely enriches the dry category-theoretical
reasoning, with extra flavor and (unnecessary but still attractive) details.

Well generated categories are hard to grasp. Their definition is complicated,
and it takes a long time to build intuition. I find it best to treat them as “the
right class of triangulated categories”. That is, they are closed under taking sub-
categories and quotients, more or less. The more specialized class of compactly
generated triangulated categories is not. Most results about well generated cate-
gories that I feel I understand, are natural generalizations of results on compactly
generated categories. So the essence is the same: with arbitrary coproducts, the
full category is “large”; we ask for a smaller generating set, which helps us do
“small” things; in good situations results about small things can be generalized
to the whole large category. For compactly generated categories, the small things
are quite small; in well generated categories we allow for less-small things. Thus
a compactly generated category is the same as an Ng-well generated category,
but going less-small we consider regular cardinals larger than Ng.
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2.4.2. Lattice quotients and products. 1 don’t feel that I have good metaphors
and imagery for these concepts, and this prevents me from feeling like I under-
stand what’s going on in some of my results about them.

I certainly don’t have much intuition about a lattice quotient, although it is
reassuring to remember that L/al = a?t (see Section 2.3 of [Wol14] for defini-
tions). The sublattice a1 invokes a strong, and obvious, visual image. Otherwise,
I treat any object BL(T)/J quite formally, going back to its definition. Similarly,
I am befuddled about the Bousfield lattice splitting induced by smashing local-
izations, described in Theorem 5.14. I feel like I should be able to “see” what
such a product looks like, but haven’t quite gotten there. Results like Proposition
5.13 certainly help.

2.4.3. Bousfield lattices of subcategories. Lattices of the form BL(loc(X)),
where loc(X) C T, seem mysterious, in a good way. Section 2 facts, like that
complements aren’t unique, and the maximum is (X), are intriguing. I'm com-
fortable working in this Bousfield lattice, slowly, but find it confusing to tease
out the relationship between this lattice and the full Bousfield lattice BL(T).
Definition 5.10 and Lemma 5.12 were inspired by my attempt to clarify this.
Fortunately, in the case of a smashing localization, as in Section 5, these are
well-behaved.

2.4.4. Localization. Localization functors don’t feature too prominently in
this paper, but when they show up, in Section 5, they are very powerful tools. It
took me a long time, and lots of practice, to get comfortable with localizations.
Maybe all that I will say here is, I've found it useful to alternate between the
localization perspective and the Verdier quotient perspective.

Every localization on T is determined by its acyclics, a nice reliable localizing
subcategory S. The existence of such a localization is equivalent to the Verdier
quotient T/S having Hom sets, i.e. being a triangulated category on its own.
This category T/S is easy to think about, formally at least: it is a “projection”
of T where everything in S (and maps that factor through an object in S) are
killed. (For years I fought the murderous imagery, but reluctantly am adopting it;
there’s no concise alternative.) The quotient map T — T/S has a right adjoint,
and the localization on T is just the composition of these.

One key idea is this: that right adjoint induces an equivalence between T/S
and the image of the localization functor, i.e. the category of locals. This equiva-
lence gives the category of locals its own tensor triangulated structure. So when
thinking about local objects, I alternate between considering quotient objects in
T/S, and considering honest objects of T but with their own tensor product and
coproducts. In the case of a smashing localization — a very, very nice type of
localization — these are the same as in T.

2.4.5. The functors fo and f*. The adjoint pair f, : D(R) = D(S) : f* is the
central idea of Section 4, and has a lot of associated imagery and metaphors. Both
fe and f* feel like good, well-behaved, nice functors, that have good properties
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that one can get a handle on. Computing with them is straightforward. There
is a concrete image of D(R) on the left, D(S) on the right, and the two functors
moving objects and morphisms back and forth.

The left adjoint f,, which sends R to S and preserves compact objects, seems
to be the nicer of the two, a more handy machine. It’s more structural, like an
architect. If it were colored, it would be green or blue. The right adjoint f°,
which is just a forgetful functor, acts by taking an object in D(S) and simply
plopping it down into D(R). The consequence is more delicate, and has more
personality. I would say f*® is peaceful and quiet, maybe off-white, a light yellow,
or gentle gray.

The fact that both f, and f® give order-preserving maps on Bousfield lattices
has a definite visual image. I see (X) < (Y), and then I see fo(X) < fo(Y)
transported to the right, in the same spatial orientation but maybe stretched or
translated.

The projection formula was mostly absorbed, over time, as one of the var-
ious options for manipulation of formulas, as discussed above when discussing
Bousfield lattices. It is so important and useful, though, that it’s one of the first
patterns I try to apply and take advantage of. During the most focused time
of working on this paper, I think the projection formula, and the Corollary 4.5
version of it, became so saturated in my thoughts that I often performed Bous-
field class computations in parallel in my mind — one version in BL(R) and one
version in BL(S). The projection formula is a way of moving back and forth, and
I reached the point where I maintained both lines of reasoning simultaneously.

As mentioned previously, the condition in Section 4.3 — that (fef*X) =
(X) for all X — strikes me as a surjectivity condition, heuristically. In this
context, I visualize BL(R) larger than BL(S), and mapping onto it, with DL(R)
and BA(R) mapping onto their counterparts. The functor f® embeds BL(S) (and
DL(S) and BA(S)) into BL(R) in an intriguing way. For example, the statement
(f*S) vV (M) = (R) is just stating that (S) in BL(S) (which is complemented
there by (0)) gets sent to a complemented class in BL(R) (in which case its
complement is now (My)).

3. Story of the development

I have broken the story of development into two parts: logistical and
conceptual.

3.1. Where and when the ideas arose. This section sets the stage for
the next, by describing the context of where and when the ideas arose. The
details are logistical and psychological.
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The idea to investigate D(Az(p)) came during the summer of 2009, while
I was riding the Trans-Siberian railway between the east coast of Russia and
Irkutsk. It was the summer after my third year of math graduate school; my
newly established PhD advisor suggested I read [Mar83| and [HPS97] to become
familiar with this axiomatic approach to tensor triangulated categories and stable
homotopy categories. I had recently read [HS98], [HP99] and [DPO08], so my
mind was primed for drawing a stronger connection between the p-local stable
homotopy category S and the derived category D(Ay). But it wasn’t that exciting
of a research question, so I didn’t pursue it very far.

In the spring of 2011 I took a leave of absence from grad school, and went
to Thailand. My base was Tonsai — a simple beach accessible only by boat, with
some huts and a few cheap restaurants. The area is popular with rock climbers,
and I spent half my time climbing and half my time developing my thesis. It was
a very fun and productive time. By hiking over a headland, or wading around
at low tide, I could get to another beach, West Railay, which had restaurants
with wifi. From here I could video-conference with my PhD advisor occasionally.
I had brought a small netbook, which allowed me to read PDFs and access the
internet. It was in this isolated, distraction-free environment that I fleshed out
most of the ideas in Section 4 and Section 5.

Or at least the seeds were planted. Upon returning to Seattle, I spent almost
a year cleaning up, improving, and writing up these results (among others), which
came to constitute parts of Chapters 2 and 4 of my thesis [Wol12]. This was
less fun and more stressful — finding subtleties and fixing mistakes in a race to
the finish.

The more general results of Section 3 didn’t arise until the fall of 2012. T was
hired by the University of Western Ontario, on a postdoc with Dan Christensen.
But we spent the year as visitors at the Instituto Superior Técnico in Lisbon,
Portugal. As I worked to generalize and clean up the results for publication, I
was able to relax again and gain some perspective. The idea emerged to examine
the relationship between the Bousfield lattice of a quotient and the quotient
of a Bousfield lattice. The results concerning square-zero objects (Prop. 2.7 to
Cor. 2.9) arose during this time, as well. Finally, the paper was submitted in
January 2013.

3.2. Process of development. This section tells the story of the process
of development of the ideas and results. The approach is chronological and more
conceptual.

I believe the first step was, in spring 2011, rereading Weibel’s book on homo-
logical algebra [Wei94]. The projection formula appears there, in Section 10.8.1,
for derived categories of bounded complexes. I wondered if this would extend to
unbounded complexes. When I convinced myself it did, I had Key Idea 2.4: each
ring map f : R — S induces adjoint functors on D(R) and D(S), and these
might extend to maps between Bousfield lattices. I pursued this direction, and
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it yielded. The adjoint functors f, and f® are so nice, it seemed like a good
direction to pursue further. There was enough detail to get my hands on explicit
computations, but also enough formal results to give the feeling that this would
lead somewhere.

On the one hand, I collected results on f, and f*, for example that f, pre-
serves compact objects, and the projection formula holds. On the other hand, I
established the maps on the level of Bousfield lattices, and investigated how they
treated the substructure BA and DL. The results of Section 4.1 and 4.2 emerged
thus.

It became clear, through lots of fiddling, that a nice setting to work in would
be one where (f,f*X) = (X) for all X. With this assumption, it was straight-
forward to prove most of the results in Section 4.3. (I only figured out Theorem
4.18 in the fall of 2012, as I was refining the results for publication.)

(Much of my attention at this point was focused on using these results to
connect what is known about Noetherian rings to the non-Noetherian case. For
example, if f: R — S is a surjective ring map and .S is Noetherian, the condition
in Section 4.3 holds and those results apply. This material appeared in my thesis,
but not the paper [Wol14].)

During this same time, I returned to [DP08] and the question of what results
therein could be extended to D(Az, ). In a very careful line-by-line rereading of
[DPO08], I reworked each proof to show what extended, didn’t extend, or extended
in some altered form. Having these two directions of research simultaneously in
my mind, creating a synergy, it was only a matter of time before I had Key Idea
2.5: to use the maps g : AZ(p) — Ag, and h : AZ(p) — Ag to connect D(AZ<p)) to
D(Ar,) and D(Ag), which are covered by [DPOS].

What followed was a period of significantly ugly computations, as I tried to
figure out precisely what these functors were doing. Once I figured out that g,
satisfied the condition (ge f*X) = (X) for all X, I felt like I was getting some-
where. I noticed that something was going on, but it wasn’t until the fall of 2011,
back in Seattle, that I came to suspect there was a smashing localization functor
involved. I was computing, and re-computing, facts such as those contained in
Proposition 5.8. Finally I noticed these Bousfield classes were behaving like those
that come from smashing localizations.

Once I had that idea, Key Idea 2.6, everything clarified. T knew the Iyengar-
Krause result [IK13, Prop. 6.12] implied Key Idea 2.7: every smashing localiza-
tion causes a splitting of the Bousfield lattice. (At the time, I found this result
remarkable, surprising, and bizarrely under-expressed in their then-preprint.) It
seemed that I was going to be able to prove a splitting of BL(AZ(p)).

At first it seemed that all my partial results, about maps from quotients of
lattices, in Section 4, were going to be subsumed by this stronger result. This
turned out not to be the case. The splitting only gives a result like Theorem 5.14,
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which splits BL(T) in terms of Bousfield lattices of subcategories. One must then
use the work of Sections 2, 3, and 4 to tighten this result and in fact get a copy
of BL(Ay) inside of BL(Az,, ), as given in Corollary 5.17.

It was a natural next step to try to show that the splitting of Corollary 5.17
descended to a splitting of the distributive lattices DL and the Boolean algebras
BA. But this revealed some unforeseen subtleties: what does it mean to be
complemented in BL(loc(h®*Ag)), where the maximum class is (h®*Ag) and not

(1)?

My attention then focused on trying to make sense of something like BL(loc(h®*Aq)).
This was during the fall of 2012. From Key Ideas 2.1 and 2.2, I knew that this
Bousfield lattice needed to be reckoned with, but to date no one had considered
BL(T) when 1 ¢ T. It was necessary to revisit many of the well-known facts about
Bousfield lattices, and carefully reassess them in the case of a proper subcategory.

The product of this reassessment is the treatment of Bousfield lattices in Sec-
tion 2. I had to decide what it should mean, for example, to be complemented,
or to be in BA. This involved lots of back-and-forth: establishing a tentative
definition, seeing if this behaved like I thought it ought to, and checking it re-
duced to the familiar notions when necessary. For example, Definition 2.4(3):
BA is the collection of Bousfield classes in DL that are complemented and have
a complement in DL. This wouldn’t be the first guess for a definition of BA, but
this is the right one, in the end.

During the fall of 2012, I had been thinking of new places to look for Bousfield
lattices, thanks to Key Idea 2.1. One such place is Verdier quotients, i.e. cate-
gories of locals. This led to Key Idea 2.3. It was straightforward to develop the
results of Section 3, following my nose. There is a subtlety about what it means
to be a lattice isomorphism, but this turns out to be a good thing. Corollary 3.3
is a nice result relating the lattice of a quotient and the quotient of a lattice. It
was fun and satisfying to work through examples, and show that for my favorite
weird categories, D(Ay) and S, this is not a lattice isomorphism (Proposition
3.5).

(I remember a fierce days-long episode of clarity on these last results, begin-
ning January 1, 2013 after returning from a night spent in isolation with the full
moon, in a cave on a small hard-to-get-to Portuguese beach.)

The final stage involved zooming out results as much as possible, and putting
them in as general a framework as I could. This meant careful attention to well-
generatedness, in Section 3, and careful attention to grading issues, in Section 4.
For this intricate work, and writing up the Introduction and background material,
alas, I needed to be inside, away from trains and beaches.
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4. Colloquial summary

A ring, call it R, is a basic type of mathematical object, one that is introduced
to students in their very first undergraduate course of “higher” math (that is,
math based on theorems and proofs). A ring is just a set with a sensible notion
of “addition” and “multiplication” on its elements, like the set of integers or
the set of fractions. The derived category D(R) of a ring R is an elaborate
construction, through several layers of abstraction and added structure. Students
usually encounter this notion in the first or second year of math grad school.
Sometimes I think of the metaphor: rings are like fruit, and derived categories
are like pies made from those fruit. Apples yield apple pie; peaches yield peach
pie. We can understand a fruit by studying the type of pie it yields.

To be slightly more honest, I go one step further and make a lattice out of
each derived category. This is called the Bousfield lattice, and mathematical
lattices actually bear some resemblance to the lattices we encounter in real life.
It’s hard to see how a fruit pie turns into a picket fence, but take my word for it.

The results in the paper [Woll4]| start out very general, and become more
specific. The goal, or motivation, is to understand the (Bousfield lattice of the)
derived category of a certain strange ring AZ(p>- A very similar ring Ap, was
studied in the paper [DPO8]. These rings are so similar that you might think of
them as two varieties of apple.

In order to connect what is known about D(Ag,) with D(Az, ), we need to
explicitly relate Ap, and Az(p)- The way this is done is with a function ¢ from
Az, to Ag,. In Section 4 of [Wol14], I show that such a function g will induce
a function g between the Bousfield lattices of derived categories. This is how
mathematicians make precise, and computational, the idea: relate Ap, to Az<p),
and use this to relate D(Ag,) to D(Az,).

Just as in real life, a common way to understand something in math is to try
to break it into smaller pieces that are better understood. For example, 20 is
the product of 4 and 5. The main results of [Wol14] do exactly this: the lattice
built from the AZ<p) “pie” is nothing more, and nothing less, than a “product”
of the lattice built from the A, pie, with the lattice built from a third variety
of apple Ag. More honestly, it turns out we don’t use the whole Ag pie, but
a subcategory of it, like a slice! Fortunately, the case of Ag and D(Ag) is also
understood through the work previously done in [DPO0S8].
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