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1. Key ideas and central organizing principles

1.1. Background. In stable homotopy theory, we can regard Eilenberg-
MacLane spectra as the fundamental “building blocks” of other spectra. This
notion is embodied by the Postnikov tower which encapsulates how a spectrum is
constructed from its individual homotopy groups. The key characteristic then of
this particular filtration is that the fibers are indeed Eilenberg-MacLane spectra.
However, in equivariant stable homotopy theory, that is, in the context of spectra
with a group action, the role of Eilenberg-MacLane spectra is not so simple.

To begin looking into the equivariant setting, we must note that the homotopy
“groups” of genuine equivariant spectra are not merely groups. These homotopy
groups for a G-spectrum X come from the fixed points of equivariant maps from
Sn to X. However, to get the full picture, instead of merely considering the
G-fixed points, we must consider the H-fixed points for all subgroups H of G.
The homotopy groups of XH for all H also have maps between them and all this
data fits together to form a Mackey functor.
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One might expect then that the proper way to extend the Postinikov tower
to the equivariant setting would be to construct a tower whose fibers were all
Eilenberg-MacLane spectra associated to Mackey functors. However, this type
of filtration does not end up being the most natural choice for classic equivariant
spectra. What we really want is a filtration that uses representation suspensions
of Eilenberg-MacLane spectra; this is the slice filtration. This filtration for a
G-spectrum X is formed in a similar fashion to the Postnikov tower but instead
of killing maps (i.e. formally inverting them up to homotopy) from ordinary
spheres to X, we kill maps from so-called slice cells. The result is that while we
still get a tower whose limit is equivalent to X and whose colimit is contractible,
the fibers are often more complicated G-spectra that we refer to as slices.

In [HHR09] the slice filtration was shown to filter the complex cobordism
spectrum in a nice way. However, when applied to other spectra, we can get some
more complicated results. What becomes mysterious in considering a slice tower
rather than a Postnikov tower is that often the homotopy of each layer of the
slice filtration differs from the next in more than one dimension. Additionally, if
we have an object that is n-slice, or capable of being the fiber in the nth layer
of a tower, and we suspend it, it may not be (n+ 1)-slice. Thus, the slice tower
does not commute with taking integer suspensions. To get a better idea of how
suspension and the slice filtration interact, it would be nice to know the slice
towers for all suspensions of simple objects. As a start, in [Yar15] we wanted
the following:

Goal: Determine the slice tower for all positive integer suspensions of HZ, the
Eilenberg-MacLane spectrum associated to the constant G-Mackey functor where
G is a cyclic p-group for p an odd prime denoted by Cpk .

1.2. Discussion of the main result. In order to describe the tower fully,
we must determine each stage (PnX) of the tower, all slices of the tower (PnnX),
and show that these pieces fit into successive fiber sequences

PnnX // PnX

��
Pn−1X

Our main result in [Yar15, Section 4], essentially gives us a blueprint for con-
structing the slice towers for our selected spectra. We first state the exact form of
all nontrivial slices and the dimensions in which they occur. From this informa-
tion we know the exact dimensions in which the stages of the tower change. We
can then determine the form of the spectra that make up each stage and confirm
that such spectra do fit into an appropriate tower as the pieces of successive fiber
sequences. The following are the key ideas that together form the main result.

Key Idea 1.1. The nontrivial slices of Sn∧HZ are of the form SV(a,b)∧HBi,j.
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V(a,b) is a Cpk -representation obtained from removing a number of irreducible
subrepresentations from copies of ρG, the regular representation of Cpk . The
definition of this representation is given exactly in Definition 3.1. Bi,j is a Mackey
functor obtained by taking quotients of maps from Z(i, j) to Z where Z(i, j) is
a slight alteration of the constant Mackey functor. A precise formula is given in
Definition 2.3. That such spectra are slices of a particular dimension is shown in
the proof of Theorem 3.2.

Key Idea 1.2. These nontrivial slices of Sn∧HZ occur in dimensions mpi−1
where where 1 ≤ i ≤ k and m is an integer of the same parity as n that occurs
in a particular finite range.

This means that the successive stages of the tower will only change in par-
ticular dimensions that are one less that a multiple of a power of p. These
dimensions are simply the dimensions of the representations V(a,b) given in Key
Idea 1.1. Additionally, we note that the ranges of i and m are finite and thus the
tower itself is finite. This means that we actually have Sn ∧HZ in the top layer
and eventually we get to the trivial spectrum. The remaining stages are briefly
described in the next Key Idea.

Key Idea 1.3. The nontrivial spectra that make up the stages of the tower,
that is P iSn ∧HZ, are all of the form SV ∧HZ where V is a Cpk-representation
of dimension n.

The towers for Sn ∧HZ are finite and thus at the top of the tower of course
we must have Sn ∧HZ itself. As we work our way down the tower, we see that
at level in which the tower changes, a 2-dimensional representation or two trivial
representations will be swapped out for another 2-dimensional representation
with fewer G-fixed points.

Key Idea 1.4. The slices are the fibers of maps between successive layers of
the spectra described in Key Idea 1.3.

That is, the slices and stages do in fact fit into fiber sequences. These fiber
sequences form the tower beginning at Sn ∧ HZ and terminating at the trivial
spectrum. There are patterns that arise in all this data and this shall be discussed
more thoroughly in the next section.

1.3. Discussion of the proof. To prove that the data given in the Key
Ideas above in fact gives us the slice tower we need to show that the limit is
equivalent to X = Sn ∧HZ, the colimit is contractible, every i-dimensional fiber
is in fact an i-slice, and these slices and successive stages we’ve determined do
indeed form fiber sequences

P iiX
// P iX

��
P i−1X
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As previously mentioned, the towers presented above are finite, so the only in-
teresting work amounts to showing each fiber is an i-slice and that appropriate
fiber sequences may be formed.

To show that a spectrum is an i-slice, one must show that it is ≤ i and ≥ i as
defined in [HHR09] or [Hil12]. As stated in Key Idea 1.1 the candidates for the
slices of our tower were of the form SV(a,b)∧HBi,j . In general, to show a spectrum

of the form SV ∧HM is ≥ dim(V ), by [Hil12, Theorem 3.7], we need only show
that V ⊂ (mρG−1) for some integer m where V G = (mρG−1)G. Additionally, to
show SV ∧HM ≤ dim(V ), we can induct on the subgroups of G. By our inductive

hypothesis, that is that S|V | ∧HM with a trivial action is ≤ |V |, and Spanier-
Whitehead duality, it will be sufficient to show that [S−ε, SV−tρ ∧HM ] = 0 for
tpk − ε > dim(V ) and ε = 0, 1. To do so, we really only need to show that the
related homology in dimension −ε is trivial and thus are able to make arguments
using chain complexes. This method of showing particular spectra are slice is
summarized in [Yar15, Theorem 5.9].

To show that we have appropriate fiber sequences, we rely heavily on the fact
that working p-locally means that our spectra SV ∧HBi,j and SV

′ ∧HBi,j will
still be equivalent even when V and V ′ differ by certain subrepresentations of
ρG. In particular, HBi,j ' Sλl ∧ HBi,j for l ≤ j where λl : Cpk → S1 is the

composition of the inclusion of the pkth roots of unity with a degree pith map
on S1. Essentially, the representation λl has too few fixed points to be “seen” by
Bi,j since Bi,j is trivial on subgroups Cpl for l ≤ j. Thus, while our descriptions
of the slices and layers of the tower may not seem to fit exactly into the correct
sequences, they are all equivalent to spectra that do.

2. Metaphors and imagery

2.1. Equivariant stable homotopy theory. Before discussing the im-
agery I use concerning the specific results of the paper [Yar15] or even the
slice filtration itself, it will be best to briefly describe how I think about the basic
objects used, G-spectra and Mackey functors.

2.1.1. G-spaces and representation spheres. As the story of G-spectra is most
fully told by relying on the collection of G-spaces called representation spheres,
it is most fitting to begin here. A G-space is a topological space with an action
of a group G. What we imagine is a collection of points that become permuted
in some way when applying elements from the group. The action induced by any
given element may be trivial in which no points are moved or it may be free in
which no points are fixed. An important collection of points in the equivariant
context is the collection of fixed points for a given subgroup H of G. In reality,
we actually need to keep track of the fixed points for all subgroups H of G and
thus, one consideration we always carry along with us is the structure of the
group lattice.
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One type of G-space that is integral to the equivariant stable field is a repre-
sentation sphere SV . What we mean by this notation is the one point compacti-
fication of the space associated to the representation V . Such a vector space may
be thought of as a G-space with action induced in the obvious fashion. That is,
each element of G acts on the space as the associated element from the general
linear group. Thus, we imagine taking a space Rn with permuted points and
gathering everything at infinity to one point while carrying that group action
along. Forming the sphere in this way forces the points at 0 and ∞ to always be
fixed. The following examples are common ones that I like to keep in mind.

Example 2.1. Consider the 1-dimensional sign representation σ : C2 →
GL(R). The associated representation space is depicted on the left in Figure 1.
When R is thought of as a C2-space with an action induced by σ, 0 is always fixed
by the C2-action and the action of the nontrivial element g swaps the positive
and negative points. Its associated representation sphere is depicted on the right.

Figure 1. The sign representation, σ, and Sσ

0

g g

∞

0

Example 2.2. Then the regular representation of C2 has a decomposition
ρ2 = 1 + σ. ρ2 is then a 2-dimensional representation with its associated space
shown in Figure 2 on the left. As a C2-space, the action of the trivial element
flips the x- and y-coordinates, fixing the diagonal. Its associated representation
sphere is depicted on the right. We can see then that the equator (coming
from the diagonal) is always fixed by the action of C2 and the upper and lower
hemispheres are swapped when acted on by the nontrivial element from C2.

Figure 2. The regular representation, ρ2, and Sρ2

g

2.1.2. G-spectra. In the context of stable homotopy theory, one may think
of a spectrum as a sequence of spaces arranged in an ordered infinite line with
structure maps running between them. When considering G-spectra, we must
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first imagine that each space used in forming the spectrum is a G-space. To
picture “naive” G-spectra one need only imagine a similarly infinite line of G-
spaces. However, “genuine” G-spectra, those considered in the paper, are a
bit more complicated. The G-spaces that fit together to form a spectrum are
instead indexed on repesentations of G. There are still infinitely many but they
are not arranged linearly. Rather, we could think of the G-spaces arranged
in a sort of directed lattice whose structure is determined by the collection of
G-representations we are indexing on. Two G-spaces, say XV and XW , are
connected in the lattice if V ⊂ W . Thus, not only do the spaces that form the
spectrum have an action of G but we must also remember that the way they are
arranged carries information from the group G as well.

2.1.3. Mackey functors. When computing the homotopy “groups” of a G-
spectrum, we actually get a collection of groups that fit together to form an
object called a Mackey functor. A Mackey functor, M , can be thought of as a
bifuntor from the orbits of G to abelian groups. It is also useful to think of a
Mackey functor as a lattice but this time, the lattice structure is determined by
the group lattice of G. Additionally, as it is a bifunctor, each edge in the lattice
has two directions. In [Yar15], we only consider G to be a cyclic p-group, and
thus all G-Mackey functors in this context can be thought of as “ladders”; the
groups M(G/H) are the rungs and the contravariant (restriction) and covariant
(transfer) morphisms form the sides. See Figure 3 for examples of Mackey functor
diagrams. Note that Z is the constant Mackey functor and B2,0 is a particular
case of a Mackey functor defined in [HHR15] and used extensively in [Yar15].

Figure 3. Examples of C2-Mackey functors

General M Z B2,0

M(Cp2/Cp2)

res

��

Z

1

��

Z/p2

q

��
M(Cp2/Cp)

tr

[[

res

��

Z

1

��

p

\\

Z/p

��

p

YY

M(Cp2/e)

tr

[[

Z

p

\\

0

ZZ

Picturing a Mackey functor in this way is especially useful for performing
computations such as homology computations with chain complexes of Mackey
functors. In such work, one can then picture a sort of commutative diagram
of lattices. Additionally, this imagery impresses upon us the important role
that subgroups play in the equivariant realm as each subgroup corresponds to a
different point in the lattice or “rung” on the ladder.
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2.2. The slice filtration. Most often, the way I imagine the slice filtration
is set against the backdrop of the Postnikov tower. The Postnikov tower builds a
spectrum one homotopy group at a time and thus one can imagine the homotopy
groups as neatly stacked blocks. On the other hand, the slice tower conjures an
image of smearing out the homotopy groups of a G-spectrum.

Below, we see the homotopy groups of PnX and Pn−1X in the Postnikov
tower:

Dimension

n+ 2

n+ 1

n

n− 1

n− 2

· · ·

PnX

· · ·

0

0

πn(X)

πn−1(X)

πn−2(X)

· · ·

Pn−1X

· · ·

0

0

0

πn−1(X)

πn−2(X)

· · ·

From this, it is easy to see that the fiber of the map PnX → Pn−1X has its
only nontrivial homotopy group in dimension n, namely, πn(X).

If we consider the layers of the slice tower PnX in terms of stacked integer-
graded homotopy groups, we do not get such a straightforward picture. This is
because each homotopy group in dimension n and below need not be the same as
the homotopy groups of X. For example, consider P0X and P−1X shown below:

Dimension

1

0

−1

· · ·

P0X

· · ·

0

π0(X)/∗

π−1(X)

· · ·

P−1X

· · ·

0

0

π−1(X)

· · ·

The Mackey functor π0(P0X) is really a quotient of π0(X). This is because
some of the slice cells we kill maps from in this instance are not as connected
as their underlying sphere. In particular, Sσ is not 0-connected even though the
underlying space, S1 is.

We pause to note that there is actually a nice description of 0-slices due to Hill
in [Hil12] and they are in fact Eilenberg-MacLane spectra. However, for larger
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slices we do not have a strong understanding. We do not know the homotopy
groups in stages above the zeroth in general. In fact, the layers are often so
jumbled that the fibers need not be Eilenberg-MacLane spectra and moreover,
are often difficult to determine even in individual cases.

We can still think of moving up the slice tower as building the G-spectrum
using homotopy information, it’s just that we are not adding one integer graded
homotopy group at a time. In constructing the nth stage of the slice tower,
homotopy groups in dimension n and below may be altered. Thus, we often see
G-spectra with many nontrivial homotopy groups as slices. So while one might
imagine the “building blocks” in the context of the Postnikov tower as uniform
cubes, the building blocks when viewed through the lens of the slice tower can
be objects of a variety of sizes and shapes. Figure 4 gives a general visual idea
of the comparison between a single Postnikov building block and a single slice
building block.

Figure 4. Postnikov layers vs. slices

πnX

nth Postnikov layer

πnX/?

πn−1X/?

πn−2X/?

(hypothetical) n-slice

It is important to keep in mind that what is depicted in Figure 4 is only a
vague possibility of what we might think about an n-slice. While it is true that
we won’t ever see any part of an n-slice building block above dimension n, we
don’t know in general how many lower dimensions the block might touch. We
also don’t really know the exact “shape” only that it makes sense to think of
parts of the block as “smaller” than the homotopy “cubes” since they arise from
quotients of the Postnikov layers.

2.3. Concerning main result. Now, how should one think about the spe-
cific slice towers for Cpk -spectra of the form Sn ∧ HZ? While we might often
describe building the tower from the bottom up, I find it useful to imagine be-
ginning at the top and working down when trying to picturing exactly what the
slice filtration does to the given spectrum. In the particular case considered in
[Yar15], every nontrivial sequence in the tower looks like
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SV ∧HM // SW ∧HZ

��
SW

′ ∧HZ

where M is some Cpk -Mackey functor and V,W, and W ′ are Cpk -representations,

W and W ′ having dimension n. In this depiction, we mean that PnX ' SW∧HZ,
Pn−1X ' SW

′ ∧ HZ, and the fiber of the map, or slice, is PnnX ' SV ∧ HM .
Now the question is, what exactly does this mean?

This is the way I “read” such a tower: the slice SV ∧ HM encodes the
information that tells us how the stages of the tower are changing. In particular, it
is the Mackey functor M that determines this; the representation V is essentially
forced by how the tower is changing. Furthermore, as mentioned above in Topic
1, these representations can be written in many equivalent ways so it doesn’t
really make sense to think of V as static. Each Mackey functor M is of a certain
type (really M = Bi,j , see Figure 3 for an example) and I think of them being
color coded to tell us how W changes into W ′. Each different color prescribes a
particular change in the tower. Consider the following example:

Example 2.3. Here is a (modified) portion of the slice tower for S10 ∧HZ
with G = C9:

SV ∧Hgreen // S4+2λ1+λ ∧HZ

��
SV

′ ∧Hred // S2+2λ1+2λ ∧HZ

��
S2+λ1+3λ ∧HZ

The “green” Mackey functor invokes a change of two trivial representations
for one λ while the “red” Mackey functor swaps one λ1 for one λ. Every λ
representation is 2-dimensional so the underlying dimension is preserved. The
order in which we write the subrepresentations (trivial, λ1, λ) lists them from
the most fixed point to least fixed points under the group action.

More generally, the change from W to W ′ is always a 2-dimensional subrep-
resentation of the regular representation for Cpk being swapped out for another
2-dimensional subrepresentation that has fewer fixed points. When looking at
each tower from top to bottom, they seem to swap out as many representations as
possible with a large number of fixed points first before swapping out representa-
tions with fewer fixed points. In particular, each one of the towers begins with a
sequence of changing trivial representations to λ-type representations. Naturally,
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one would like to know why this is the case. In order to better understand this,
one must look instead at the pattern of Mackey functor types as these determine
the changes in representations.

The various “colors” of M (or types of Bi,j) follow a pattern that relies on
the p-adic valuation of n for each (n − 1)-slice. Figures 5 and 6 give the order
the Mackey functor types for the nontrivial slices in the given towers for G = C9.
At the top of each we see the same type of functors until the power of p = 3
decreases. Then we can see that anytime the slice dimension n − 1 has a larger
p-adic valuation for n we have a different type of functor. Why? Consider, for
example, the slice in dimension 12(3)− 1. We could also write this as 4(3)2 − 1
and thus might expect that the functor type is more similar to those slices in
dimensions m(p)2 − 1 at the top. This is indeed the case and furthermore is the
reason why I think of these as green (closer to blue) rather than red.

Figure 5. S7 ∧HZ
Slice Dimension Mackey functor type

5(3)2 − 1 blue

3(3)2 − 1 blue

5(3)− 1 red

3(3)− 1 green

Another property to note is that in each of the towers depicted the red/green
pattern that follows the blue slices is the same. In particular, one red slice
appears first and each tower ends in green. This is due to the fact that the
difference between the suspensions is 9, exactly the size of the group we are
considering. We could guess (and we’d be right!) that the tower for S25 ∧ HZ
would also begin with a number of blue slices, then one red, then a longer p-adic
pattern of greens and reds, ending with green. The reason behind this property
is intrinsically tied to the interplay between the slice tower and suspensions by
regular representation spheres; the dimension of such spheres is of course the
order of G. The exact relationship between the slice tower and suspensions is
discussed in Topic 3 below.

One last note regarding these patterns is that the number of color block
types corresponds to the power of p in the group G. When G = Cp, we see
only one type of Mackey functor. When G = Cp2 as in the tables above, we see
two: blue and red/green. When G = Cp3 we see three (e.g. blue, red/green,
purple/turquoise/white). Additionally, the size of the blocks in each tower is the
same (except in the outlier case where the n in Sn ∧HZ is a multiple of p). This
property is a result of the relationship between the slice tower and the notion of
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Figure 6. S16 ∧HZ
Slice Dimension Mackey functor type

14(3)2 − 1 blue

12(3)2 − 1 blue

10(3)2 − 1 blue

8(3)2 − 1 blue

6(3)2 − 1 blue

14(3)− 1 red

12(3)− 1 green

10(3)− 1 red

8(3)− 1 red

6(3)− 1 green

restricting to subgroups in the equivariant setting. This relationship is further
discussed in Topic 3.

3. Story of the development

3.1. The background. In this section, we look at a brief history behind
the problem of determining particular slice towers. Hill, Hopkins, and Ravenel
were the first to fully develop and use the notion of the slice filtration as an ex-
pansion on the work of Dugger in [Dug05]. In [HHR09] they presented a formal
definition of the filtration and used the particular slices of spectra built out of
the spectrum MU in their solution to the Kervaire invariant one problem. While
the towers of such spectra were determined rather straightforwardly, the towers
of other, even seemingly simpler spectra, can be quite a bit more complicated.
Additionally, there is still much unknown about the way the slice filtration filters
spectra in general. Thus, one would like to know towers for a variety of spectra
to get a better handle on what exactly the slice filtration does to G-spectra.

There are two aspects to consider when choosing the spectra whose towers
we will compute. One is the group whose action we are considering. Beginning
with cyclic p-groups is a logical place to start as the associated Mackey functors
are relatively simple since all subgroups are nested. The other is of course the
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spectrum itself and suspensions of it by representation spheres. A natural place
to begin on this front could be Eilenberg-MacLane spectra and their suspensions.
HZ is a classic choice and Hill, Hopkins, and Ravenel express in [HHR15] a goal
of determining the slice towers of suspensions of HZ by virtual representation
spheres. In [HHR15], they compute the towers for particular suspensions by
subrepresentations of the regular representation associated to cyclic p-groups. In
a sense, the paper [Yar15] is a complementary one in that it determines the
towers for suspensions of HZ by trivial representations.

3.2. The process. While much of the early work on this project was es-
sential to determining the final result, these computations play no part in the
actual proof and thus all discussions concerning this part of the process were
omitted from the paper. Here, I will lay out the early ideas and useful notions
that ultimately lead to the main result.

In beginning to compute the slice tower for any given G-spectrum, there are
a few results concerning the slice filtration in general that give a good starting
point. One such result, given as Corollary 2.12 in [Hil12], provides the form of
the (−1)-layer of any slice tower.

Useful Result 3.1. The (−1)-layer of any G-spectrum X is the (−1)-
Postnikov layer:

P−1−1 (X) ' Σ−1Hπ−1(X)

Though it is not true in general that all slices are integer suspensions of
Eilenberg-MacLane spectra, we can still use this result to compute higher dimen-
sional slices when used in conjunction with a second result concerning suspensions
of the slice filtration.

We know that we cannot suspend a slice by an integral amount and necessarily
get a slice in a higher dimension as in the Postinikov tower, but the slice tower
does commute with suspensions by regular representation spheres. This result is
again given by Hill in [Hil12].

Useful Result 3.2. For any G-spectrum X, any m, and any k we have:

Pm|G|+k(ΣmρGX) = ΣmρGP k(X)

and thus,

P
m|G|+k
m|G|+k (ΣmρGX) = ΣmρGP kk (X)

If in the above result we replace X by Σ−mρGX, let k = −1 and apply result
3.1 we get the following:

Corollary 3.3. For any G-spectrum X and any m we have:

P
m|G|−1
m|G|−1 (X) ' ΣmρG−1Hπ−1(Σ

−mρGX)
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This combination of these two results provides a useful trick for computing
all (m|G| − 1)-slices of any G-spectrum X as all one really needs to compute
is the (−1)-homotopy of Σ−mρGX. In our case, we consider X = Sn ∧ HZ
and G = Cpk , and thus need only determine π−1(S

n−mρ
pk ∧HZ). This can

be computed rather straightforwardly as the Bredon homology H−1(S
n−mρ

pk ;Z)

using chain complexes of Mackey functors, to obtain all (mpk − 1)-slices.

Theorem 3.4. For all integers n ≥ 0 we have the following slices for the
Cpk-spectrum Sn ∧HZ:

Pmp
k−1

mpk−1 (Sn∧HZ) =


ΣmρG−1HBk,j

n+ 2 · 0j

pk−j
≤ m ≤ n− 2

pk−j−1
, m, n of same parity

ΣmρG−1HZ∗ n = rpk − 1 and m = n+1
pk

∗ otherwise

While this may look a bit daunting, if we examine the spectra themselves,
ΣmρG−1HBk,j and ΣmρG−1HZ∗ are exactly the spectra given in dimensionsmpk−
1 from our Key Idea 1.2. We now know of course that these are not all of the
nontrivial slices of Sn ∧HZ but it gives a good framework upon which to build.
The most obvious next question is then, “In what dimensions aside from mpk−1
are there nontrivial slices?” At this point, another result from [Hil12] concerning
the slice filtration is useful. In the following, H is any subgroup of G and i∗H is
the forgetful functor from G-spectra to H-spectra.

Useful Result 3.5. The restriction to H of the slice tower of X is the slice
tower of X restricted to H:

Pni∗H(X) = i∗HP
n(X)

How does this help? Let us consider an example. Suppose we wish to compute
the slice tower for the Cp2-spectrum Sn ∧HZ. From Theorem 3.4, we know that

we have nontrivial slices in dimensions mp2 − 1 for various m. However, upon
restricting Sn ∧ HZ to Cp, we know by Result 3.5 that we should also have
nontivial slices in dimensions mp− 1 for specified m. Thus, we have determined
another class of nontrivial slices that must appear in the tower. Extending this
result we can easily see that for the Cpk spectrum Sn ∧ HZ we should have

nontrivial slices in dimensions mpd − 1 for all 1 ≤ d ≤ k.

It is not too difficult to see that the mp − 1 slices determined by such com-
putations are in fact the only nontrivial slices for Sn ∧HZ considered as a Cp-
spectrum. Hence, it is not too far a leap to guess that for the Cpk spectra the

(mpd − 1)-slices are in fact the only nontrivial ones.

4. Colloquial summary

Just as a doctor may use a CAT scan to better understand what is happening
in the human body, a mathematician often uses a given tool to better understand
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the structure and properties of certain mathematical objects. In addition to using
the tool to study an object, one might, conversely, study the tool itself in order to
better understand what it actually does and what information it gives us about
the objects it is applied to.

For example, it makes sense to study what a CAT machine is and how it
works because then we know what it will see in the human body, and what it
will miss. The purpose of the paper [Yar15] is a little of both: using a given tool
to study particular objects in an attempt to study the tool itself. In the paper
itself, we investigate what our tool, the slice filtration, does to a particular family
of objects called G-spectra. In conjunction with other work [HHR15] we hope
that our answers might tell us more about the slice filtration itself.

4.1. The objects. The objects we consider, G-spectra, are generalizations
of objects called G-spaces. As the latter are a bit more tangible, we now focus on
such objects rather than G-spectra. How should one think of a G-space? First,
one might think about a space as a collection of points but most often these
points are all connected to form a continuous shape. For example, spaces we
often consider in this context are circles, spheres, or higher-dimensional versions
of spheres. Then what does the “G” tell us? G represents another mathematical
object called a group. The most straightforward example of a group is a collection
of numbers with an operation, like addition. A G-space is a collection of points
that get jumbled around in a way that is dictated by the types of elements (or
numbers) in the group G.

There is an important restriction on how the points are being jumbled: they
can only be swapped around in place of other points but the overall shape of
the space cannot change. For example, we might consider a circle and the way
the points will be rearranged is by rotating the circle by a given amount. This
type of restriction means that by using G to swap around points, we are really
capturing data about the symmetry of the space.

Additionally, we can plug many different groups in for G. G could be the
simplest type of group, a group containing only one number. In this case, there
is actually no difference between a G-space and an ordinary space. The larger
and more complicated G becomes, the more difficult it will be to study any
corresponding G-space. Our goal in this setting is to study not only the shape
of the object but also how the points are being rearranged.

The G-spectra that we analyze in [Yar15] are given the name “Sn ∧ HZ”
where n can be any positive whole number. The partHZ is an object that encodes
a certain type of information. The Z tells us what this type of information is
being represented. The “Sn” are n-dimensional spheres and “∧” is a type of
product. Essentially, the “Sn∧” part tells us to shift the object HZ to dimension
n. Notably, when we shift the object, we are doing it in a way that maintains its
“type”. It turns out that Sn ∧HZ is considered to be a relatively simple object
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by initial observation but our tool will allow us to see what is really happening
beneath the surface, so to speak.

4.2. The tool. A common theme in many areas of study is learning about
the properties of an object by seeing how the object is constructed out of smaller
pieces. A microbiologist may learn about an organism by studying its cells or a
chemist may study a substance by determining what elements it is comprised of.

Similarly, mathematicians will often break down objects into smaller pieces
and gain insight by studying how the object is built out of the smaller pieces.
The slice filtration is a tool that helps to analyze how a G-spectrum is built out
of “smaller” G-spectra. This ends up being a bit difficult as it is not immediately
apparent what in fact we mean by “smaller” or “simpler” G-spectra.

One way to think about the slice filtration is that it provides building blocks
and a blueprint for assembling the blocks into the spectrum we are analyzing.
However, the blocks it uses are a bit mysterious. If we remove the “G” and think
only about spectra, we would see that a spectrum can be built as a sort of stack
of uniform type blocks. Every layer is even, like building a wall out of Legos.

For a G-spectrum, our wall looks more like a game of tetris. The layers
are not even; each block may have a different shape and be a part of many
layers. Difficulties arise because in general we don’t even know exactly what
all the blocks look like! In the paper [Yar15] we determine the building blocks
and how they are assembled to form the objects Sn ∧HZ. The fact that these
superficially simple objects have fairly complicated structures as determined by
the slice filtration demonstrates how rich G-spectra really are.
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